1,487 research outputs found

    Langrangian finite element and finite difference methods for poisson problems

    Get PDF
    The use of Lagrangian finite element methods for solving a Poisson problem produces systems of linear equations, the global stiffness equations. The components of the vectors which are the solutions of these systems are approximations to the exact solution of the problem at nodal points in the region of definition. There is thus associated with each nodal point an equation which can be thought of as a difference equation. Difference equations resulting from the use of polynomial trial functions of various orders on regular meshes of square and isosceles right triangular elements are derived. The rival merits of this technique of setting up a standard difference equation, as distinct from the more usual practice with finite elements of the repeated use of local stiffness matrices, are considered

    A numerical conformal transformation method for harmonic mixed boundary value problems in polygonal domains

    Get PDF
    A method is given for solving two dimensional harmonic mixed boundary value problems in simply-connected polygonal domains with re-entrant boundaries. The method consists of a numerical conformal mapping together with three other conformal transformations. The numerical mapping transforms the original domain onto the unit circle, which in turn is mapped onto a rectangle by means of two bilinear and one Schwarz-Christoffel transformations. The transformed problem in the rectangle is solved by inspection

    Numerical solution of two dimensional harmonic boundary problems containing singularities by conformal transformation methods

    Get PDF
    Numerical solutions to a class of two dimensional harmonic mixed boundary value problems defined on rectangular domains and containing singularities are obtained using conformal transformation methods. These map the original problems into similar ones containing no singularities, and to which analytic solutions are known. Although the mapping technique produces analytic solutions to the original problems, these involve elliptic functions and integrals which have to be evaluated numerically, so that in practice only approximations can be obtained. Results calculated in this manner for model problems compare favourably with those obtained previously by other methods. On this evidence, and because of the ease with which the method can be adapted to different individual problems, we strongly recommend the transformation technique for solving problems of this class. W

    Giant Relaxation Oscillations in a Very Strongly Hysteretic SQUID ring-Tank Circuit System

    Get PDF
    In this paper we show that the radio frequency (rf) dynamical characteristics of a very strongly hysteretic SQUID ring, coupled to an rf tank circuit resonator, display relaxation oscillations. We demonstrate that the the overall form of these characteristics, together with the relaxation oscillations, can be modelled accurately by solving the quasi-classical non-linear equations of motion for the system. We suggest that in these very strongly hysteretic regimes SQUID ring-resonator systems may find application in novel logic and memory devices.Comment: 7 pages, 5 figures. Uploaded as implementing a policy of arXiving old paper

    Pinch Resonances in a Radio Frequency Driven SQUID Ring-Resonator System

    Get PDF
    In this paper we present experimental data on the frequency domain response of a SQUID ring (a Josephson weak link enclosed by a thick superconducting ring) coupled to a radio frequency (rf) tank circuit resonator. We show that with the ring weakly hysteretic the resonance lineshape of this coupled system can display opposed fold bifurcations that appear to touch (pinch off). We demonstrate that for appropriate circuit parameters these pinch off lineshapes exist as solutions of the non-linear equations of motion for the system.Comment: 9 pages, 8 figures, Uploaded as implementing a policy of arXiving old paper

    Performance modeling of ultraviolet Raman lidar systems for daytime profiling of atmospheric water vapor

    Get PDF
    We describe preliminary results from a comprehensive computer model developed to guide optimization of a Raman lidar system for measuring daytime profiles of atmospheric water vapor, emphasizing an ultraviolet, solar-blind approach

    A Fully Quantum Mechanical Model of a SQUID Ring Coupled to an Electromagnetic Field

    Get PDF
    A quantum system comprising of a monochromatic electromagnetic field coupled to a SQUID ring with sinusoidal non-linearity, is studied. A magnetostatic flux Φx\Phi_{x} is also threading the SQUID ring, and is used to control the coupling between the two systems. It is shown that for special values of Φx\Phi_{x} the system is strongly coupled. The time evolution of the system is studied. It is shown that exchange of energy takes place between the two modes and that the system becomes entangled. A second quasi-classical model that treats the electromagnetic field classically is also studied. A comparison between the fully quantum mechanical model with the electromagnetic field initially in a coherent state and the quasi-classical model, is made.Comment: 7 pages, 9 figures. Uploaded as implementing a policy of arXiving old paper
    • …
    corecore